organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Isobutyl 3,5-dinitrobenzoate

Pei Zou,* Min-Hao Xie, Shi-Neng Luo, Ya-Ling Liu and Yong-lun He

Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China Correspondence e-mail: zou-pei@163.com

Received 14 March 2009; accepted 20 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.069; wR factor = 0.225; data-to-parameter ratio = 13.2.

In the structure of the title compound, $C_{11}H_{12}N_2O_6$, the molecules are stacked along the b axis without any $\pi - \pi$ interactions. The stacked columns are linked together by nonclassical intermolecular C-H···O interactions,. In the molecule, the nitro groups make dihedral angles of 9.4 (5) and $10.3 (5)^{\circ}$ with the benzene ring.

Related literature

For the properties and applications of dinitrobenzoate derivatives, see: Huang et al. (2004); Kagitani et al. (1984); Olive (1979). For the anti-creatinine effects of a series of 3,5dinitrobenzoic acid esters, see: Yu & Yang (2002). For bondlength data, see: Allen et al. (1987).

(3) Å

(3) Å

Experimental

Crystal data

$C_{11}H_{12}N_2O_6$	a = 16.666(3)
$M_r = 268.23$	b = 4.776(1) Å
Monoclinic, $P2_1/n$	c = 16.678 (3) A

 $\beta = 110.30 \ (3)^{\circ}$ V = 1245.1 (5) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Enraf–Nonius CAD-4	2266 independent reflections
diffractometer	1402 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.061$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.965, T_{\max} = 0.988$	every 200 reflections
2348 measured reflections	intensity decay: 1%

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.069$ 172 parameters $wR(F^2) = 0.225$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.112266 reflections $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

 $\mu = 0.12 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

T = 293 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H7A\cdots O2^{i}$	0.93	2.52	3.441 (5)	168
Symmetry code: (i) -	x, -v - 1, -z +	- 1.		

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2148).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. A. G., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Huang, H. Q., Li, Q., Cai, M. Sh. & Li, Zh. J. (2004). J. Chin. Pharm. Sci. 13, 242-244
- Kagitani, T., Minagawa, M., Nakahara, Y., Kimura, S., Tsubakimoto, T., Oshiumi, R. & Sakano, K. (1984). Patent Jpn Kokai Tokyo Koho JP 60 258 116.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Olive, P. L. (1979). Br. J. Cancer, 40, 89-93.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yu, J. G. & Yang, D. Z. (2002). Chin. J. Appl. Chem. 19, 858-861.

supplementary materials

Acta Cryst. (2009). E65, o878 [doi:10.1107/S1600536809010381]

Isobutyl 3,5-dinitrobenzoate

P. Zou, M.-H. Xie, S.-N. Luo, Y.-L. Liu and Y.-J. He

Comment

Due to their biological activities, dinitrobenzoate derivatives are widely used in pharmacology. Dinitrobenzoic acid derivatives are effective in tumour treatment as radiation sensitizers (Kagitani *et al.*, 1984). Moreover, some synthetic dinitrobenzoate compounds have shown useful properties in DNA and oligosaccharide synthesis (Olive, 1979; Huang *et al.*, 2004). Furthermore, a series of 3,5-dinitrobenzoic acid esters has also been synthesized and their anti-creatinine effects have been studied (Yu & Yang, 2002). To study their structures and activities, we report here the crystal structure of the title compound, (I).

The bond lengths and angles in (I) (Fig. 1) are within expected ranges (Allen *et al.*, 1987). The two nitro groups are inclined by 9.4 (5) and 169.7 (5)° to the benzene ring, respectively. Except for atoms C1 and C2, the other non-H atoms of the molecule lie in a plane. In the crystal structure, the molecules are stacked along the *b* axis, without any π - π interaction. The stacked columns are linked together by non-classical intermolecular interactions of the type C—H···O, details have been given in Table 1.

Experimental

3,5-Dinitrobenzoylchloride (5200 mg, 23 mmol) was added in iso-butanol (25 ml, 271 mmol) and the mixture was refluxed for 4 h. White product appeared after cooling to room temperature. They were separated and washed with cold water. Single crystals of the title compound were grown by slow evaporation of a methanol solution: colourless needle-shaped crystals were formed after several days.

Refinement

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with C—H distances of 0.93 Å(aromatic), 0.98 Å(CH), 0.97 Å(CH₂) and 0.96 Å(CH₃); $U_{iso}(H) = 1.2U_{eq}(C)$ for the aromatic H, CH and CH₂; $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃.

Figures

Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Isobutyl 3,5-dinitrobenzoate

Crystal data	
$C_{11}H_{12}N_2O_6$	$F_{000} = 560$
$M_r = 268.23$	$D_{\rm x} = 1.431 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 25 reflections
a = 16.666 (3) Å	$\theta = 9-12^{\circ}$
<i>b</i> = 4.7760 (10) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 16.678 (3) Å	<i>T</i> = 293 K
$\beta = 110.30 \ (3)^{\circ}$	Needle, colourless
$V = 1245.1 (5) \text{ Å}^3$	$0.30\times0.20\times0.10\ mm$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.061$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.5^{\circ}$
T = 293 K	$h = 0 \rightarrow 20$
$\omega/2\theta$ scans	$k = 0 \rightarrow 5$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -20 \rightarrow 18$
$T_{\min} = 0.965, T_{\max} = 0.988$	3 standard reflections
2348 measured reflections	every 200 reflections
2266 independent reflections	intensity decay: 1%
1402 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.069$
$wR(F^2) = 0.225$
<i>S</i> = 1.11
2266 reflections
172 parameters

sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.1P)^2 + P]$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.17180 (16)	-0.2811 (6)	0.58690 (17)	0.0567 (8)
O2	-0.08913 (17)	-0.4218 (7)	0.51387 (18)	0.0616 (8)
O3	-0.0648 (2)	0.3897 (9)	0.8166 (2)	0.0933 (13)
O4	0.0522 (2)	0.6102 (7)	0.8340 (2)	0.0767 (10)
O5	0.23983 (17)	0.2979 (6)	0.68814 (18)	0.0603 (8)
O6	0.20462 (18)	-0.0604 (6)	0.60527 (19)	0.0637 (9)
N1	-0.0004 (2)	0.4291 (8)	0.8000 (2)	0.0542 (9)
N2	0.18975 (19)	0.1116 (7)	0.6515 (2)	0.0463 (8)
C1	-0.2813 (3)	-0.6160 (11)	0.6546 (3)	0.0745 (14)
H1A	-0.2346	-0.5124	0.6936	0.112*
H1B	-0.2629	-0.8031	0.6491	0.112*
H1C	-0.3278	-0.6224	0.6761	0.112*
C2	-0.3856 (3)	-0.6279 (12)	0.5060 (3)	0.0864 (17)
H2A	-0.4308	-0.6444	0.5289	0.130*
H2B	-0.3680	-0.8112	0.4951	0.130*
H2C	-0.4055	-0.5237	0.4535	0.130*
C3	-0.3102 (3)	-0.4769 (9)	0.5697 (3)	0.0593 (11)
H3A	-0.3289	-0.2870	0.5771	0.071*
C4	-0.2420 (3)	-0.4536 (10)	0.5323 (3)	0.0645 (12)
H4A	-0.2208	-0.6386	0.5264	0.077*
H4B	-0.2651	-0.3702	0.4759	0.077*
C5	-0.1000 (2)	-0.2845 (8)	0.5687 (2)	0.0418 (8)
C6	-0.0337 (2)	-0.0901 (7)	0.6262 (2)	0.0363 (8)
C7	0.0447 (2)	-0.0816 (7)	0.6143 (2)	0.0388 (8)
H7A	0.0553	-0.1948	0.5736	0.047*
C8	0.1063 (2)	0.0988 (7)	0.6641 (2)	0.0381 (8)
C9	0.0934 (2)	0.2683 (7)	0.7252 (2)	0.0406 (8)
H9A	0.1356	0.3901	0.7578	0.049*
C10	0.0157 (2)	0.2503 (7)	0.7359 (2)	0.0407 (8)
C11	-0.0482 (2)	0.0730 (8)	0.6876 (2)	0.0430 (9)
H11A	-0.1002	0.0641	0.6965	0.052*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0495 (15)	0.0679 (19)	0.0601 (17)	-0.0169 (14)	0.0283 (13)	-0.0232 (14)
O2	0.0559 (17)	0.070 (2)	0.0611 (17)	-0.0124 (15)	0.0226 (14)	-0.0231 (16)
O3	0.072 (2)	0.123 (3)	0.096 (3)	0.002 (2)	0.043 (2)	-0.047 (2)
O4	0.093 (2)	0.066 (2)	0.070 (2)	-0.0068 (19)	0.0260 (18)	-0.0222 (18)
O5	0.0550 (16)	0.0615 (19)	0.0638 (18)	-0.0203 (15)	0.0200 (14)	-0.0124 (15)
O6	0.0572 (17)	0.067 (2)	0.075 (2)	-0.0002 (15)	0.0328 (15)	-0.0174 (17)
N1	0.056 (2)	0.053 (2)	0.0485 (19)	0.0094 (18)	0.0128 (16)	-0.0119 (17)
N2	0.0420 (17)	0.048 (2)	0.0478 (18)	0.0002 (15)	0.0143 (14)	0.0031 (16)
C1	0.073 (3)	0.085 (4)	0.069 (3)	-0.020 (3)	0.029 (2)	-0.008 (3)
C2	0.051 (3)	0.100 (4)	0.090 (4)	-0.023 (3)	0.001 (2)	0.023 (3)
C3	0.052 (2)	0.054 (3)	0.073 (3)	-0.004 (2)	0.022 (2)	0.006 (2)
C4	0.056 (2)	0.081 (3)	0.057 (2)	-0.024 (2)	0.020 (2)	-0.020 (2)
C5	0.048 (2)	0.040 (2)	0.0394 (19)	-0.0065 (17)	0.0181 (16)	0.0011 (17)
C6	0.0414 (18)	0.0324 (18)	0.0320 (17)	-0.0024 (15)	0.0088 (14)	-0.0001 (15)
C7	0.0446 (19)	0.0347 (18)	0.0377 (18)	0.0001 (16)	0.0151 (15)	0.0015 (15)
C8	0.0384 (18)	0.0371 (19)	0.0378 (18)	0.0030 (15)	0.0118 (15)	0.0040 (15)
C9	0.047 (2)	0.0325 (19)	0.0378 (18)	-0.0016 (16)	0.0091 (15)	-0.0001 (15)
C10	0.0456 (19)	0.038 (2)	0.0352 (18)	0.0048 (16)	0.0095 (15)	-0.0036 (15)
C11	0.0422 (19)	0.048 (2)	0.0387 (18)	0.0011 (17)	0.0134 (16)	0.0060 (17)

Geometric parameters (Å, °)

O1—C5	1.332 (4)	C2—H2C	0.9600
O1—C4	1.462 (5)	C3—C4	1.479 (5)
O2—C5	1.190 (4)	С3—НЗА	0.9800
O3—N1	1.213 (4)	C4—H4A	0.9700
O4—N1	1.222 (4)	C4—H4B	0.9700
O5—N2	1.228 (4)	C5—C6	1.505 (5)
O6—N2	1.210 (4)	C6—C11	1.373 (5)
N1—C10	1.463 (5)	C6—C7	1.390 (5)
N2—C8	1.478 (4)	C7—C8	1.377 (5)
C1—C3	1.485 (6)	С7—Н7А	0.9300
C1—H1A	0.9600	C8—C9	1.375 (5)
C1—H1B	0.9600	C9—C10	1.369 (5)
C1—H1C	0.9600	С9—Н9А	0.9300
C2—C3	1.517 (6)	C10—C11	1.381 (5)
C2—H2A	0.9600	C11—H11A	0.9300
C2—H2B	0.9600		
C5—O1—C4	116.0 (3)	O1—C4—H4A	109.6
O3—N1—O4	123.5 (4)	С3—С4—Н4А	109.6
O3—N1—C10	118.5 (4)	O1—C4—H4B	109.6
O4—N1—C10	117.9 (3)	C3—C4—H4B	109.6
O6—N2—O5	123.7 (3)	H4A—C4—H4B	108.1
O6—N2—C8	118.3 (3)	O2—C5—O1	124.8 (3)

O5—N2—C8	118.0 (3)	O2—C5—C6	123.7 (3)
C3—C1—H1A	109.5	O1—C5—C6	111.5 (3)
C3—C1—H1B	109.5	C11—C6—C7	120.5 (3)
H1A—C1—H1B	109.5	C11—C6—C5	123.0 (3)
C3—C1—H1C	109.5	C7—C6—C5	116.5 (3)
H1A—C1—H1C	109.5	C8—C7—C6	118.2 (3)
H1B—C1—H1C	109.5	С8—С7—Н7А	120.9
C3—C2—H2A	109.5	С6—С7—Н7А	120.9
C3—C2—H2B	109.5	C7—C8—C9	122.7 (3)
H2A—C2—H2B	109.5	C7—C8—N2	118.8 (3)
С3—С2—Н2С	109.5	C9—C8—N2	118.6 (3)
H2A—C2—H2C	109.5	С10—С9—С8	117.3 (3)
H2B—C2—H2C	109.5	С10—С9—Н9А	121.4
C4—C3—C1	113.2 (4)	С8—С9—Н9А	121.4
C4—C3—C2	108.1 (4)	C9—C10—C11	122.3 (3)
C1—C3—C2	111.8 (4)	C9—C10—N1	118.7 (3)
С4—С3—НЗА	107.9	C11—C10—N1	119.0 (3)
С1—С3—НЗА	107.9	C6—C11—C10	118.9 (3)
С2—С3—НЗА	107.9	C6—C11—H11A	120.5
O1—C4—C3	110.2 (3)	C10-C11-H11A	120.5
C5—O1—C4—C3	168.4 (4)	O6—N2—C8—C9	171.3 (3)
C1—C3—C4—O1	-62.2 (5)	O5—N2—C8—C9	-9.2 (5)
C2—C3—C4—O1	173.4 (4)	C7—C8—C9—C10	0.6 (5)
C4—O1—C5—O2	-2.2 (6)	N2-C8-C9-C10	-179.5 (3)
C4—O1—C5—C6	177.4 (3)	C8—C9—C10—C11	-0.6 (5)
O2—C5—C6—C11	178.1 (4)	C8—C9—C10—N1	-179.6 (3)
O1—C5—C6—C11	-1.5 (5)	O3—N1—C10—C9	-171.3 (4)
O2—C5—C6—C7	-1.8 (5)	O4—N1—C10—C9	8.5 (5)
O1—C5—C6—C7	178.6 (3)	O3—N1—C10—C11	9.7 (5)
C11—C6—C7—C8	-1.5 (5)	O4—N1—C10—C11	-170.5 (3)
C5—C6—C7—C8	178.4 (3)	C7—C6—C11—C10	1.5 (5)
C6—C7—C8—C9	0.4 (5)	C5-C6-C11-C10	-178.4 (3)
C6—C7—C8—N2	-179.5 (3)	C9—C10—C11—C6	-0.4 (5)
O6—N2—C8—C7	-8.8 (5)	N1-C10-C11-C6	178.5 (3)
O5—N2—C8—C7	170.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C7—H7A…O2 ⁱ	0.93	2.52	3.441 (5)	168
Symmetry codes: (i) $-x$, $-y-1$, $-z+1$.				

